

Network Based Analysis of Cancer Data

Teresa Przytycka
NIH / NLM / NCBI

Type of information we use

- Patient DNA information (somatic) mutations and copy number variation of genes (done by comparing with normal tissues from the same patient)
- Gene expression: estimates "activity" of the gene.
- Other other markers metabolites, epigenetic,
- Pathology description
- Survival time
- Age, sex

We aslo have a rough knowledge of interactions between genes

Key challenges in cancer data analysis

- Complexity: Multiple driver mutations are typically required for caner progression
- Heterogeneity: Phenotypically similar cancer cases might be caused by different sets of driver mutations
 - Driver mutations mutations contributing to cancer progression
 - Passenger mutations neutral mutations accumulating during cancer progression
- Some driver mutations are rare
- Epistasis masking of the effect of one mutation by another mutation
- Cancer evolution

Network/Systems biology view

Motivation:

- Effects of genetic alteration propagate trough the interaction network affecting downstream genes
- Different driver mutations often dysregulate common pathways

Which network to use?

High throughput network versus "the true"

First line of attack....

finding dysregulated pathways

Module Cover Approach

Optimization problem:

Find <u>smallest cost</u> set of modules so that each disease case is covered at least k times

Cost is a function of:

- distance in the network of genes in same module
- A similarity measure (application dependent)
- number of modules (parameterized penalty)

Module Cover: Glioblastoma Data

Signature modules from GBM Dataset (REMBRANDT)

modules

<u>Different patients groups have different signature</u> modules

cases

From the recognition of heterogeneity to modeling

Second line of attack:

Using mixture models for capturing heterogeneity

Topic Model

Topic I

president 0.45 parliament 0.37 debate 0.21

• • • •

Topic II

police 0.51 instigation 0.29 search 0.17 body....

Topics III

score 0.38 win 0.22 ball 0.14

. . . .

Topic IV

Audience 0.27 Screen 0.15 Movie

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Topic Model

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Additional information

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Document similarity network

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Topic Model for Cancer data

Explanatory features (words):

- mutations, CNV, micro RNA level;
- Epigenetic factors,
- Sex, age, environment

Phenotypic features

Survival time
Response to drugs,.....
Gene expression profile

Patient graph

Nodes – patients

Edges – phenotypic similarities

Key idea

neighbors in patient network should have similar explanatory features

Represent each patient as mixture of the subtypes

Patient-patient relationship based on 1000 models

Connecting "causes ("words") to subtypes

Third line of attack....

Information flow from genotype to phenotypes

Information flow from genotypic changes to expression changes

Copy number aberrations or/and mutations

Gene expression

Explaining expression changes in the signature genes

Cancer Cases
CNV data

Cancer Cases
Gene expression data

eQTL analysis links expression variability to genotypic variability

Uncovering pathways of information flow between CNV and target gene

Tu *et al* Bioinfomatcis 2006 Suthram *et al* MSB 2008 Kim et al. PolS CB 2011/RECOMB 2010

Adding resistances differentiate likelihoods of the edges

Resistance - set to favor most likely path -based on gene expression values (reversely proportional to the average correlation of the expression of the adjacent genes with

expression of the target gene)

Finding subnetworks with significant current flow

Resistance - set to favor most likely path -based on gene expression values (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

Repeat for other genes and significantly associated loci

Cancer Cases
CNV data

Cancer Cases Gene expression data

Are there common functional pathways?

Gene Hubs

MYC(110) E2F1(88) CREBBP(34) GRB2(27) E2F4(43) SP3(26) ESR1(25) TFAP2A(25) NFKB1(23) MYB(22) JUN(22) E2F2(22) **RELA(21)** AR(21) SP1(20) RPS27A(20) MAPK3(19) POU5F1(17) HIF1A(16) PPARA(15) CDC42(15) UBA52(13) CDK7(13) **UBE2I(11)** YBX1(13) YWHAZ(12) CEBPB(12) POU2F1(12) SMAD3(11) **TAL1(11)**

Pathway Hubs

Driving Copy number aberrations

GO biological process	#
cell cycle arrest	10
epidermal growth factor receptor signaling pathway	9
negative regulation of cell growth	9
Ras protein signal transduction	9
regulation of sequestering of triglyceride	8
cell proliferation	7
nuclear mRNA splicing, via spliceosome	7
regulation of cholesterol storage	7
nucleotide-excision repair	7
RNA elongation from RNA polymerase II promoter	7
insulin receptor signaling pathway	6
transcription initiation from RNA polymerase II promoter	6
N-terminal peptidyl-lysine acetylation	5
phosphoinositide-mediated signaling	5
positive regulation of lipid storage	4
positive regulation of specific transcription from RNA	3
polymerase II promoter	
positive regulation of epithelial cell proliferation	3
base-excision repair	2
negative regulation of hydrolase activity	2
gland development	2
positive regulation of MAP kinase activity	2
regulation of nitric-oxide synthase activity	2 2 2 2 2 2 2 2
estrogen receptor signaling pathway	2
regulation of receptor biosynthetic process	2
response to organic substance	2
JAK-STAT cascade	2
regulation of transforming growth factor-beta2	2
production	
G1/S transition of mitotic cell cycle	2
SMAD protein nuclear translocation	2

Summary

- Uncovering Cancer Heterogeneity trough data integration and network models
 - Module Cover method for finding dysregulated pathways
 - Topic model for cancer subtypes and their mixtures and determining features
 - Information flow from genotype to phenotype

DongYeon Cho Phung Dao Jan Hoinka YooAh Kim Damian Wojtowicz

Collaborators:

Aptamers

Eli Gliboa (UM), Zuben Sauna (FDA); Marit Nilsen-Hamilton (U. Iowa)

DNA structural dynamics and its regulatory role

David Levens (NCI), Rafael Casellas (NCI)

Systems biology approach to gene dosage compensation

Brian Oliver (NIDDK)

Systems biology of cancer

Stefan Wuchty, Jozef Przytycki